This week

1. Appendix A.7: complex numbers
2. Application: impedance
A complex number is a vector in \mathbb{R}^2.
A complex number is a vector in \mathbb{R}^2.

In stead of \mathbb{R}^2 we write \mathbb{C}.
A complex number is a vector in \mathbb{R}^2.

In stead of \mathbb{R}^2 we write \mathbb{C}.

Rather than x- and y-axis, we call them the real axis and imaginary axis.
A complex number is a vector in \mathbb{R}^2.

In stead of \mathbb{R}^2 we write \mathbb{C}.

Rather than x- and y-axis, we call them the real axis and imaginary axis.

The complex number i is defined as $(0, 1)$.
Addition is defined termwise: if \(z = (x, y) \) and \(w = (u, v) \), then

\[
z + w = (x + y, y + v)
\]

Scalar multiplication is defined termwise: if \(z = (x, y) \) and \(\alpha \in \mathbb{R} \), then

\[
\alpha z = (\alpha x, \alpha y)
\]

Notebook: Sum.nb
Definition

Let $z = (x, y)$ and $w = (u, v)$ be two complex numbers. The product of z and w is defined as

$$zw = (xu - yv, xv + yu)$$
Definition

Let $z = (x, y)$ and $w = (u, v)$ be two complex numbers. The **product of z and w** is defined as

$$zw = (xu - yv, xv + yu)$$

Examples:

- $(1, 2)(4, -1) = (1 \cdot 4 - 2(-1), 1(-1) + 2 \cdot 4) = (6, 7)$.

Definition

Let \(z = (x, y) \) and \(w = (u, v) \) be two complex numbers. The **product of** \(z \) and \(w \) **is defined as**

\[
z w = (x u - y v, x v + y u)
\]

Examples:

- \((1, 2)(4, -1) = (1 \cdot 4 - 2(-1), 1(-1) + 2 \cdot 4) = (6, 7)\).
- \((2, 0)(3, -4) = (2 \cdot 3 - 0(-4), 2(-4) + 0 \cdot 3) = (2 \cdot 3, 2(-4)) = 2 (3, -4)\).
Definition

Let \(z = (x, y) \) and \(w = (u, v) \) be two complex numbers. The **product of** \(z \) **and** \(w \) **is defined as**

\[
z w = (x u - y v, x v + y u)
\]

Examples:

- \((1, 2)(4, -1) = (1 \cdot 4 - 2(-1), 1(-1) + 2 \cdot 4) = (6, 7)\).
- \((2, 0)(3, -4) = (2 \cdot 3 - 0(-4), 2(-4) + 0 \cdot 3) = (6, 2(-4)) = 2 (3, -4)\).
- \(i^2 = i \cdot i = (0, 1)(0, 1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 1 \cdot 0) = (-1, 0)\).

Notebook: Product.nb
Definition

Let \(z = (x, y) \) and \(w = (u, v) \) be two complex numbers. The product of \(z \) and \(w \) is defined as

\[
z w = (x u - y v, x v + y u)
\]

Exercise

Let \(z = (2, 1) \) and \(w = (3, 1) \), calculate \(zw \).

- \((2, 0)(3, -4) = (2 \cdot 3 - 0 \cdot (-4), 2(-4) + 0 \cdot 3) = (6, -8) = 2(3, -4)\).
- \(i^2 = i \cdot i = (0, 1)(0, 1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 1 \cdot 0) = (-1, 0)\).

Notebook: Product.nb
Definition
Let $z = (x, y)$ and $w = (u, v)$ be two complex numbers. The **product of z and w** is defined as

$$zw = (x u - y v, x v + y u)$$

Exercise
Let $z = (2, 1)$ and $w = (3, 1)$, calculate zw.

Answer
$$zw = (5, 5).$$
Convention

Every real number x is identified with the complex number $(x, 0)$.
Convention

Every real number x is identified with the complex number $(x, 0)$.

Examples: $0 = (0, 0)$, $1 = (1, 0)$, $-1 = (-1, 0)$.
Convention

Every real number x is identified with the complex number $(x, 0)$.

- Examples: $0 = (0, 0)$, $1 = (1, 0)$, $-1 = (-1, 0)$.

- The complex numbers on the real axis behave just like the real numbers in \mathbb{R}:
 - $x + y \rightarrow (x, 0) + (y, 0) = (x + y, 0 + 0) = (x + y, 0)$.
 - $x - y \rightarrow (x, 0) - (y, 0) = (x - y, 0 - 0) = (x - y, 0)$.
 - $xy \rightarrow (x, 0)(y, 0) = (xy - 0 \cdot 0, x \cdot 0 + 0 \cdot y) = (xy, 0)$.
By identifying $x \in \mathbb{R}$ with the complex number $(x, 0)$, we regard the points on the real axis as the real number line.
Real numbers are complex numbers

- By identifying $x \in \mathbb{R}$ with the complex number $(x, 0)$, we regard the points on the real axis as the real number line.

- $i^2 = -1$
Real numbers are complex numbers

- By identifying \(x \in \mathbb{R} \) with the complex number \((x, 0)\), we regard the points on the real axis as the real number line.

- \(i^2 = -1 \)

- The complex numbers are an expansion of the real numbers:
Let \(z, w \) and \(u \) be complex numbers. Define \(z - w \) and \(-z \) in the usual way, then

1. \(z + w = w + z \)
2. \(z + w + u = z + (w + u) = (z + w) + u \)
3. \(z + 0 = z \)
4. \(-z = (\text{--}1)z \)
5. \(z - w = z + (-w) \)
6. \(z - z = 0 \)
7. \(zw = wz \)
8. \(z \cdot 1 = z \)
9. \(z \cdot 0 = 0 \)
10. \(z w u = z (w u) = (z w) u \)
11. \(z(w + u) = zw + zu \)
12. \(z(w - u) = zw - zu \)
The canonical form

Theorem

Let \(z = (x, y) \) be a complex number, with \(x \) and \(y \) real. Then

\[
z = x + iy.
\]
The canonical form

Theorem

Let $z = (x, y)$ be a complex number, with x and y real. Then

$$z = x + iy.$$

Proof:

$$x + iy = (x, 0) + (0, 1)(y, 0)$$
The canonical form

Theorem

Let $z = (x, y)$ be a complex number, with x and y real. Then

$$z = x + i y.$$

Proof:

$$x + i y = (x, 0) + (0, 1)(y, 0)$$

$$= (x, 0) + (0 \cdot y - 1 \cdot 0, 0 \cdot 0 + 1 \cdot y)$$
Theorem

Let \(z = (x, y) \) be a complex number, with \(x \) and \(y \) real. Then

\[
z = x + i y.
\]

Proof:

\[
x + i y = (x, 0) + (0, 1)(y, 0)
\]

\[
= (x, 0) + (0 \cdot y - 1 \cdot 0, 0 \cdot 0 + 1 \cdot y)
\]

\[
= (x, 0) + (0, y) = (x, y) = z.
\]
The canonical form

Theorem

Let \(z = (x, y) \) be a complex number, with \(x \) and \(y \) real. Then

\[
z = x + i \, y.
\]

Proof:

\[
x + i \, y = (x, 0) + (0, 1)(y, 0)
\]
\[
= (x, 0) + (0 \cdot y - 1 \cdot 0, 0 \cdot 0 + 1 \cdot y)
\]
\[
= (x, 0) + (0, y) = (x, y) = z.
\]

Definition

The form \(x + i \, y \) is called the \textbf{canonical form} of \(z \).
The canonical form

Theorem

Let \(z = (x, y) \) be a complex number, with \(x \) and \(y \) real. Then

\[
 z = x + i y.
\]

Proof:

\[
 x + i y = (x, 0) + (0, 1)(y, 0) \\
 = (x, 0) + (0 \cdot y - 1 \cdot 0, 0 \cdot 0 + 1 \cdot y) \\
 = (x, 0) + (0, y) = (x, y) = z.
\]

Definition

The form \(x + i y \) is called the **canonical form** of \(z \).

- Henceforth we will always write complex numbers in canonical form.
Let $z = x + i y$ and $w = u + i v$ be two complex numbers, with x, y, u and v real. Then

\[
z + w = (x + i y) + (u + i v)\\
= x + u + i y + i v\\
= (x + u) + i(y + v).
\]
Let \(z = x + i y \) and \(w = u + i v \) be two complex numbers, with \(x, y, u \) and \(v \) real. Then

\[
z + w = (x + i y) + (u + i v)
\]

\[
= x + u + i y + i v
\]

\[
= (x + u) + i(y + v).
\]

For the product of \(z \) and \(w \) we have

\[
z w = (x + i y)(u + i v)
\]
Let $z = x + i y$ and $w = u + i v$ be two complex numbers, with x, y, u and v real. Then

$$z + w = (x + i y) + (u + i v)$$

$$= x + u + i y + i v$$

$$= (x + u) + i(y + v).$$

For the product of z and w we have

$$z w = (x + i y)(u + i v)$$

$$= x u + (i y)(i v) + x(i v) + (i y)u$$
Let \(z = x + i\, y \) and \(w = u + i\, v \) be two complex numbers, with \(x, y, u \) and \(v \) real. Then

\[
z + w = (x + i\, y) + (u + i\, v) \\
= x + u + i\, y + i\, v \\
= (x + u) + i\,(y + v).
\]

For the product of \(z \) and \(w \) we have

\[
z\, w = (x + i\, y)(u + i\, v) \\
= x\, u + (i\, y)(i\, v) + x\,(i\, v) + (i\, y)\, u \\
= x\, u + i^2\, y\, v + i\, x\, v + i\, y\, u
\]
Let $z = x + i\, y$ and $w = u + i\, v$ be two complex numbers, with x, y, u and v real. Then

$$z + w = (x + i\, y) + (u + i\, v)$$
$$= x + u + i\, y + i\, v$$
$$= (x + u) + i(y + v).$$

For the product of z and w we have

$$z\, w = (x + i\, y)(u + i\, v)$$
$$= x\, u + (i\, y)(i\, v) + x(i\, v) + (i\, y)u$$
$$= x\, u + i^2 y\, v + i\, x\, v + i\, y\, u$$
$$= (x\, u - y\, v) + i(x\, v + y\, u).$$
Let \(z = x + iy \) and \(w = u + iv \) be two complex numbers, with \(x, y, u \) and \(v \) real. Then

\[
z + w = (x + iy) + (u + iv)
\]

Exercise

Calculate \((3 - 2i)^2\).

\[
z w = (x + iy)(u + iv)
\]

\[
= xu + (iy)(iv) + xi v + iy u
\]

\[
= xu + i^2yv + ixv + iyu
\]

\[
= (xu - yv) + i(xv + yu).
\]
Let \(z = x + iy \) and \(w = u + iv \) be two complex numbers, with \(x, y, u \) and \(v \) real. Then

\[
z + w = (x + iy) + (u + iv)
\]

Exercise

Calculate \((3 - 2i)^2\).

Answer

\[(3 - 2i)^2 = 5 - 12i.\]
Assignment: IMM2 - Tutorial 6.1
Real and Imaginary part

Definition

Let $z = x + i\ y$ be a complex number with x and y real. Then x is the \textbf{real part of} z and y is the \textbf{imaginary part of} z. We denote

$$x = \text{Re} z \quad \text{and} \quad y = \text{Im} z.$$
2.2 Definition

Let $z = x + i \, y$ be a complex number with x and y real. Then the conjugate of z is the complex number \bar{z} defined by

$$\bar{z} = x - i \, y.$$
Definition

Let \(z = x + iy \) be a complex number with \(x \) and \(y \) real. Then the **absolute value of** \(z \) is the distance of \(z \) to 0:

\[
|z| = \sqrt{x^2 + y^2}.
\]

- The definition is based on the Pythagorean theorem.
- The absolute value is sometimes called **modulus** or **norm**.
Let z and w be complex numbers, then

1. $z + w = \bar{z} + \bar{w}$

2. $z - w = \bar{z} - \bar{w}$

3. $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$

4. $|z|^2 = z \bar{z}$

5. $|z \cdot w| = |z| \cdot |w|$

6. $|z + w| \leq |z| + |w|$
Let z and w be complex numbers, then

1. $\overline{z + w} = \overline{z} + \overline{w}$

2. $\overline{z - w} = \overline{z} - \overline{w}$

3. $\overline{zw} = \overline{z} \overline{w}$

4. $|z|^2 = z \overline{z}$

5. $|zw| = |z| |w|$

6. $|z + w| \leq |z| + |w|$

Property 6 is called the **triangular inequality**.
Let z and w be complex numbers, then

1. $\overline{z + w} = \overline{z} + \overline{w}$
2. $\overline{z - w} = \overline{z} - \overline{w}$
3. $zw = z\overline{w}$
4. $|z|^2 = z\overline{z}$
5. $|zw| = |z||w|

Exercise

Let $z = 2 + i$, calculate $|z|$, $|z|^2$ and $|z^2|$.
Properties of conjugation and absolute value

Let z and w be complex numbers, then

1. $z + w = \overline{z} + \overline{w}$
2. $z - w = \overline{z} - \overline{w}$
3. $zw = \overline{z} \overline{w}$
4. $|z|^2 = z \overline{z}$
5. $|zw| = |z| |w|

Exercise

Let $z = 2 + i$, calculate $|z|$, $|z|^2$ and $|z^2|$.

Answer

$|z| = \sqrt{5}$

$|z|^2 = |z^2| = 5$ ($|z|^2 = |z^2|$ follows from 5.)
Theorem

For every complex number \(z \) *the following holds:*

1. \(\text{Re} \, z = \frac{\overline{z} + z}{2} \)
2. \(\text{Im} \, z = \frac{\overline{z} - z}{2i} \)

Write \(z = x + iy \), then

\[
\overline{z} + z = (x + iy) + (x - iy) = 2x = 2 \text{ Re} \, z,
\]

\[
\overline{z} - z = (x + iy) - (x - iy) = 2iy = 2 \text{ Im} \, z.
\]
The real and imaginary part

Theorem

For every complex number z the following holds:

1. $\text{Re } z = \frac{\bar{z} + z}{2}$
2. $\text{Im } z = \frac{\bar{z} - z}{2i}$

- Write $z = x + iy$, then

$$z + \bar{z} = (x + iy) + (x - iy)$$
The real and imaginary part

Theorem

For every complex number z the following holds:

1. $\text{Re } z = \frac{\bar{z} + z}{2}$
2. $\text{Im } z = \frac{\bar{z} - z}{2}i$

- Write $z = x + iy$, then

\[
 z + \bar{z} = (x + iy) + (x - iy) = 2x = 2\text{ Re } z,
\]
The real and imaginary part

Theorem

For every complex number z the following holds:

(1) $\text{Re } z = \frac{\overline{z} + z}{2}$

(2) $\text{Im } z = \frac{\overline{z} - z}{2i}$

Write $z = x + iy$, then

\[z + \overline{z} = (x + iy) + (x - iy) = 2x = 2 \text{ Re } z, \]

and

\[z - \overline{z} = (x + iy) - (x - iy) \]
The real and imaginary part

Theorem

For every complex number \(z \) the following holds:

1. \(\text{Re } z = \frac{\bar{z} + z}{2} \)
2. \(\text{Im } z = \frac{\bar{z} - z}{2} \)

Write \(z = x + iy \), then

\[
z + \bar{z} = (x + iy) + (x - iy) = 2x = 2 \text{ Re } z,
\]

and

\[
z - \bar{z} = (x + iy) - (x - iy) = 2iy,
\]
The real and imaginary part

Theorem

For every complex number z the following holds:

1. $\text{Re } z = \frac{z + \bar{z}}{2}$
2. $\text{Im } z = \frac{z - \bar{z}}{2i}$

Write $z = x + iy$, then

\[z + \bar{z} = (x + iy) + (x - iy) = 2x = 2 \text{ Re } z, \]

and

\[z - \bar{z} = (x + iy) - (x - iy) = 2iy, \]

\[-\frac{1}{2}i(z - \bar{z}) = y = \text{ Im } z. \]
Problem

For arbitrary $z \neq 0$, find a complex number w such that $zw = 1$.

The number w is called the reciproke of z and is denoted as $1/z$. The reciproke of z is sometimes denoted as z^{-1}. If $z = x + iy$ with x and y real, then $1/z = 1/|z|^2 z = 1/(x^2 + y^2)(x - iy) = x/(x^2 + y^2) - y/(x^2 + y^2)i$.

UNIVERSITY OF TWENTE. Introduction to Mathematics and Modeling Lecture 6: Complex numbers 16/40
Problem

For arbitrary $z \neq 0$, find a complex number w such that $zw = 1$.

- Assume that $zw = 1$, then

$$
\bar{z} \cdot w = \bar{z}
$$
Problem

For arbitrary $z \neq 0$, find a complex number w such that $zw = 1$.

- Assume that $zw = 1$, then

\[
\bar{z} z w = \bar{z} \implies |z|^2 w = \bar{z}
\]
Problem

For arbitrary $z \neq 0$, find a complex number w such that $zw = 1$.

- Assume that $zw = 1$, then

\[
\bar{z}zw = \bar{z} \quad \Rightarrow \quad |z|^2 w = \bar{z} \quad \Rightarrow \quad w = \frac{1}{|z|^2} \bar{z}
\]
The reciproke

Problem

For arbitrary \(z \neq 0 \), find a complex number \(w \) such that \(zw = 1 \).

- Assume that \(zw = 1 \), then

\[
\overline{z}zw = \overline{z} \quad \Rightarrow \quad |z|^2 w = \overline{z} \quad \Rightarrow \quad \frac{1}{z} = w = \frac{1}{|z|^2} \overline{z}
\]

- The number \(w \) is called the \textbf{reciproke of} \(z \) and is denoted as \(\frac{1}{z} \).
The reciprocal

Problem

For arbitrary \(z \neq 0 \), find a complex number \(w \) such that \(zw = 1 \).

- Assume that \(zw = 1 \), then
 \[
 \overline{z}zw = \overline{z} \quad \Rightarrow \quad |z|^2 w = \overline{z} \quad \Rightarrow \quad \frac{1}{z} = w = \frac{1}{|z|^2} \overline{z}
 \]

- The number \(w \) is called the **reciproke** of \(z \) and is denoted as \(\frac{1}{z} \).

- The reciproke of \(z \) is sometimes denoted as \(z^{-1} \).
The reciproke

Problem

For arbitrary \(z \neq 0 \), find a complex number \(w \) such that \(z \, w = 1 \).

- Assume that \(z \bar{w} = 1 \), then

\[
\begin{align*}
\bar{z} \, z \, w &= \bar{z} \quad \Rightarrow \quad |z|^2 \, w = \bar{z} \quad \Rightarrow \\
\frac{1}{z} &= w = \frac{1}{|z|^2} \, \bar{z}
\end{align*}
\]

- The number \(w \) is called the **reciproke of** \(z \) and is denoted as \(\frac{1}{z} \).

- The reciproke of \(z \) is sometimes denoted as \(z^{-1} \).

- If \(z = x + iy \) with \(x \) and \(y \) real, then

\[
\frac{1}{z} = \frac{1}{|z|^2} \, \bar{z} = \frac{1}{x^2 + y^2} (x - iy) = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2} \, i.
\]
Definition

Let z and w be complex numbers. If $z \neq 0$ then the **quotient of u and z** is defined as the product of u and the reciprocal of z:

\[
\frac{u}{z} = u \cdot \frac{1}{z}.
\]
Definition

Let \(z \) and \(w \) be complex numbers. If \(z \neq 0 \) then the **quotient of** \(u \) and \(z \) is defined as the product of \(u \) and the reciprocal of \(z \):

\[
\frac{u}{z} = u \cdot \frac{1}{z}.
\]

Notebook: Quotient.nb

- Equivalently we can write \(\frac{u}{z} = \frac{1}{|z|^2} u \bar{z} \).

Example:

\[
\frac{3 + i}{1 + 2i} = \frac{(3 + i)(1 - 2i)}{(1 + 2i)(1 - 2i)} = \frac{5 - 5i}{5} = 1 - i.
\]
Definition

Let z and w be complex numbers. If $z \neq 0$ then the quotient of u and z is defined as the product of u and the reciprocal of z:

$$\frac{u}{z} = u \cdot \frac{1}{z}.$$

- Equivalently we can write $\frac{u}{z} = \frac{1}{|z|^2} \cdot u \overline{z}$.
- Practical approach: multiply numerator and denominator with \overline{z}:

$$\frac{u}{z} = \frac{u \overline{z}}{z \overline{z}},$$

and elaborate $u \overline{z}$.

Example:

$$\frac{3 + i}{1 + 2i} = \frac{(3 + i)(1 - 2i)}{(1 + 2i)(1 - 2i)} = \frac{5 - 5i}{5} = 1 - i.$$
Definition

Let z and w be complex numbers. If $z \neq 0$ then the quotient of u and z is defined as the product of u and the reciprocal of z:

$$
\frac{u}{z} = u \cdot \frac{1}{z}.
$$

- Equivalently we can write $\frac{u}{z} = \frac{1}{|z|^2} u \overline{z}$.
- Practical approach: multiply numerator and denominator with \overline{z}:
 $$
 \frac{u}{z} = \frac{u \overline{z}}{z \overline{z}},
 $$
 and elaborate $u \overline{z}$.
- Example:
 $$
 \frac{3 + i}{1 + 2i} = \frac{(3 + i)(1 - 2i)}{(1 + 2i)(1 - 2i)}
 $$
Definition

Let z and w be complex numbers. If $z \neq 0$ then the quotient of u and z is defined as the product of u and the reciprocal of z:

$$\frac{u}{z} = u \cdot \frac{1}{z}.$$

Equivalently we can write

$$\frac{u}{z} = \frac{1}{|z|^2} u \bar{z}.$$

Practical approach: multiply numerator and denominator with \bar{z}:

$$\frac{u}{z} = \frac{u \bar{z}}{z \bar{z}},$$

and elaborate $u \bar{z}$.

Example:

$$\frac{3 + i}{1 + 2i} = \frac{(3 + i)(1 - 2i)}{(1 + 2i)(1 - 2i)} = \frac{5 - 5i}{1^2 + 2^2}$$
Definition

Let \(z \) and \(w \) be complex numbers. If \(z \neq 0 \) then the quotient of \(u \) and \(z \) is defined as the product of \(u \) and the reciprocal of \(z \):

\[
\frac{u}{z} = \frac{1}{\bar{z}}.
\]

- Equivalently we can write \(\frac{u}{z} = \frac{1}{|z|^2} \frac{u}{\bar{z}} \).
- Practical approach: multiply numerator and denominator with \(\bar{z} \):

\[
\frac{u}{z} = \frac{u \bar{z}}{z \bar{z}},
\]

and elaborate \(u \bar{z} \).
- Example:

\[
\frac{3 + i}{1 + 2i} = \frac{(3 + i)(1 - 2i)}{(1 + 2i)(1 - 2i)} = \frac{5 - 5i}{1^2 + 2^2} = \frac{5 - 5i}{5} = 1 - i.
\]
Definition

Let z and w be complex numbers. If $z \neq 0$ then the quotient of u and z is defined as the product of u and the reciproke of z:

$$u / z = u \frac{1}{z}.$$

Equivalently we can write

$$u / z = \frac{1}{|z|^2} u z.$$

Exercise

Write $\frac{3 + i}{3 - 4i}$ in canonical form.

Practical approach: multiply numerator and denominator with \bar{z}:

$$u / z = \frac{u \bar{z}}{z \bar{z}},$$

and elaborate $u \bar{z}$.

Example:

$$\frac{3 + i}{1 + 2i} = \frac{(3 + i)(1 - 2i)}{(1 + 2i)(1 - 2i)} = \frac{5 - 5i}{1^2 + 2^2} = \frac{5 - 5i}{5} = 1 - i.$$
Definition

Let z and w be complex numbers. If $w \neq 0$, then the quotient of z and w is defined as the product of z and the reciprocal of w:

$$z \div w = \frac{z}{w}$$

Equivalently, we can write

$$z \div w = \frac{|w|^2}{z \cdot \overline{w}}.$$

Exercise

Write $\frac{3 + i}{3 - 4i}$ in canonical form.

Answer

$$\frac{3 + i}{3 - 4i} = \frac{(3 + i)(1 - 2i)}{(1 + 2i)(1 - 2i)} = \frac{5 - 5i}{5} = 1 - i.$$
Let $u \neq 0$, v, $z \neq 0$ and w be complex numbers.

1. $\frac{w}{1} = w$

2. $\frac{w}{z} \frac{v}{u} = \frac{w}{z} \frac{v}{u}$

3. $\frac{1}{w/z} = \frac{z}{w}$ (for $w \neq 0$)

4. $\frac{w}{z} = \frac{\bar{w}}{\bar{z}}$

5. $\left| \frac{w}{z} \right| = \left| \frac{w}{z} \right|$

For all $m \in \mathbb{Z}$ and $n \in \mathbb{Z}$ the following holds:

1. $z^m z^n = z^{m+n}$

2. $(z^m)^n = z^{mn}$

3. $\frac{1}{z^m} = z^{-m}$

4. $z^n w^n = (zw)^n$

5. $\left(\frac{w}{z} \right)^n = \frac{w^n}{z^n}$
Assignment: IMM2 - Tutorial 6.2
The argument of a complex number $z \neq 0$ is the angle that the line through 0 and z makes with the positive real axis. The argument of z is denoted as $\text{arg}(z)$.

- The argument of 0 is not defined.
Definition

The argument of a complex number \(z \neq 0 \) is the angle that the line through 0 and \(z \) makes with the positive real axis. The argument of \(z \) is denoted as \(\arg(z) \).

- The argument of 0 is not defined.
- The argument is expressed in radians.
The argument of a complex number $z \neq 0$ is the angle that the line through 0 and z makes with the positive real axis.

The argument of z is denoted as $\arg(z)$.

- The argument of 0 is not defined.
- The argument is expressed in radians.
- The argument is measured from the positive real axis.
The argument of a complex number $z \neq 0$ is the angle that the line through 0 and z makes with the positive real axis. The argument of z is denoted as $\arg(z)$.

- The argument of 0 is not defined.
- The argument is expressed in radians.
- The argument is measured from the positive real axis.
- If the direction is counter-clockwise, the argument is positive.
The argument of a complex number \(z \neq 0 \) is the angle that the line through 0 and \(z \) makes with the positive real axis. The argument of \(z \) is denoted as \(\arg(z) \).

The argument of 0 is not defined.

- The argument is expressed in radians.
- The argument is measured from the positive real axis.
- If the direction is counter-clockwise, the argument is positive.
- If the direction is clockwise, the argument is negative.
Definition

The **argument** of a complex number $z \neq 0$ is the angle that the line through 0 and z makes with the positive real axis.

The argument of z is denoted as $\arg(z)$.

- The argument of 0 is not defined.
- The argument is expressed in radians.
- The argument is measured from the positive real axis.
- If the direction is counter-clockwise, the argument is *positive*.
- If the direction is clockwise, the argument is *negative*.
- The argument is determined up to a multiple of 2π.

Exercise

Find $\arg(z)$ for $z = 1$, $z = i$, $z = -1$ and $z = -i$.

Answer

$\arg(1) = 0$

$\arg(i) = \frac{\pi}{2}$

$\arg(-1) = \pi$

$\arg(-i) = -\frac{\pi}{2}$ or $\frac{3\pi}{2}$
The argument of a complex number $z \neq 0$ is the angle that the line through 0 and z makes with the positive real axis. The argument of z is denoted as $\arg(z)$.

- The argument of 0 is not defined.
- The argument is expressed in radians.
- The argument is measured from the positive real axis.
- If the direction is counter-clockwise, the argument is positive.
- If the direction is clockwise, the argument is negative.
- The argument is determined up to a multiple of 2π.

Exercise

Find $\arg(z)$ for $z = 1, z = i, z = -1$ and $z = -i$. Answer

$\arg(1) = 0$

$\arg(i) = \frac{\pi}{2}$

$\arg(-1) = \pi$

$\arg(-i) = \frac{-\pi}{2}$ or $\frac{3\pi}{2}$
The argument of a complex number $z \neq 0$ is the angle that the line through 0 and z makes with the positive real axis. The argument of z is denoted as $\arg(z)$.

The argument of 0 is not defined.

The argument is expressed in radians.

The argument is measured from the positive real axis.

If the direction is counter-clockwise, the argument is positive.

If the direction is clockwise, the argument is negative.

The argument is determined up to a multiple of 2π.

Exercise

Find $\arg(z)$ for $z = 1$, $z = i$, $z = -1$ and $z = -i$.

Answer

$\arg(1) = 0$

$\arg(i) = \frac{\pi}{2}$

$\arg(-1) = \pi$

$\arg(-i) = -\frac{\pi}{2}$ or $\frac{3\pi}{2}$
The Euler function

Definition

The Euler function is the function that assigns to every real number \(\varphi \) *the complex number*

\[
e^{i \varphi} = \cos \varphi + i \sin \varphi.
\]
The Euler function

Definition

The Euler function is the function that assigns to every real number \(\varphi \) the complex number

\[
e^{i\varphi} = \cos \varphi + i \sin \varphi.
\]

- The number \(e^{i\varphi} \) lies on the unit circle: \(|e^{i\varphi}| = 1 \).
The Euler function

Definition

The Euler function is the function that assigns to every real number φ the complex number

$$e^{i\varphi} = \cos \varphi + i \sin \varphi.$$

- The number $e^{i\varphi}$ lies on the unit circle: $|e^{i\varphi}| = 1$.
- The real part of $e^{i\varphi}$ is $\cos \varphi$, the imaginary part of $e^{i\varphi}$ is $\sin \varphi$.
The Euler function is the function that assigns to every real number \(\varphi \) the complex number

\[
e^{i\varphi} = \cos \varphi + i \sin \varphi.
\]

- The number \(e^{i\varphi} \) lies on the unit circle: \(|e^{i\varphi}| = 1 \).
- The real part of \(e^{i\varphi} \) is \(\cos \varphi \), the imaginary part of \(e^{i\varphi} \) is \(\sin \varphi \).
- The complex number \(e^{i\varphi} \) is the number on the unit circle with argument \(\varphi \).
The Euler function

Theorem

For every real number φ and ψ we have

$$e^{i(\varphi + \psi)} = e^{i\varphi} e^{i\psi}$$
The Euler function

Theorem

For every real number φ and ψ we have

$$e^{i(\varphi+\psi)} = e^{i\varphi} e^{i\psi}$$

- Use trigonometry formulas to derive

 $$e^{i(\varphi+\psi)} = \cos(\varphi + \psi) + i \sin(\varphi + \psi)$$

 $$= \cos \varphi \cos \psi - \sin \varphi \sin \psi + i(\sin \varphi \cos \psi + \cos \varphi \sin \psi).$$
The Euler function

Theorem

For every real number φ and ψ we have

$$e^{i(\varphi + \psi)} = e^{i\varphi} e^{i\psi}$$

- Use trigonometry formulas to derive

 $$e^{i(\varphi + \psi)} = \cos(\varphi + \psi) + i \sin(\varphi + \psi)$$
 $$= \cos \varphi \cos \psi - \sin \varphi \sin \psi + i(\sin \varphi \cos \psi + \cos \varphi \sin \psi).$$

- Expand the right-hand side:

 $$e^{i\varphi} e^{i\psi} = (\cos \varphi + i \sin \varphi)(\cos \psi + i \sin \psi)$$
 $$= \cos \varphi \cos \psi + i^2 \sin \varphi \sin \psi + i \sin \varphi \cos \psi + i \cos \varphi \sin \psi$$
The Euler function

Theorem

For every real number \(\varphi \) and \(\psi \) we have

\[
e^{i(\varphi + \psi)} = e^{i\varphi} e^{i\psi}
\]

- Use trigonometry formulas to derive

\[
e^{i(\varphi + \psi)} = \cos(\varphi + \psi) + i \sin(\varphi + \psi)
\]

\[
= \cos \varphi \cos \psi - \sin \varphi \sin \psi + i(\sin \varphi \cos \psi + \cos \varphi \sin \psi).
\]

- Expand the right-hand side:

\[
e^{i\varphi} e^{i\psi} = (\cos \varphi + i \sin \varphi)(\cos \psi + i \sin \psi)
\]

\[
= \cos \varphi \cos \psi + i^2 \sin \varphi \sin \psi + i \sin \varphi \cos \psi + i \cos \varphi \sin \psi
\]

\[
= \cos \varphi \cos \psi - \sin \varphi \sin \psi + i(\sin \varphi \cos \psi + \cos \varphi \sin \psi)
\]

\[
= e^{i(\varphi + \psi)}.
\]
The Euler function Cheat Sheet

\[e^{i\varphi} = \cos \varphi + i \sin \varphi \]

\[e^{i0} = 1 \]

\[|e^{i\varphi}| = 1 \]

\[e^{i(\varphi + \psi)} = e^{i\varphi} e^{i\psi} \]

\[(e^{i\varphi})^n = e^{in\varphi} \text{ for all } n \in \mathbb{Z} \]

\[e^{i\varphi} = e^{-i\varphi} = \frac{1}{e^{i\varphi}} \]
Theorem

Every complex number $z \neq 0$ *can be written as the product of a positive real number and an Euler function value. In particular, if* $r = |z|$ *and* $\varphi = \arg z$, *then*

$$z = r e^{i \varphi}$$
Theorem

Every complex number \(z \neq 0 \) can be written as the product of a positive real number and an Euler function value. In particular, if \(r = |z| \) and \(\varphi = \arg z \), then

\[
z = r e^{i\varphi}
\]

- Write \(z = x + i y \) with \(x \) and \(y \) real, then

\[
\cos \varphi = \frac{x}{r} \quad \text{and} \quad \sin \varphi = \frac{y}{r}.
\]
Theorem

Every complex number $z \neq 0$ can be written as the product of a positive real number and an Euler function value. In particular, if $r = |z|$ and $\varphi = \arg z$, then

$$z = r e^{i\varphi}$$

Write $z = x + i y$ with x and y real, then

$$\cos \varphi = \frac{x}{r} \quad \text{and} \quad \sin \varphi = \frac{y}{r}.$$
Theorem

Let \(z \) and \(w \) be two complex numbers written in polar coordinates:

\[
z = r \, e^{i\varphi} \quad \text{and} \quad w = s \, e^{i\psi},
\]

then

\[
z w = r s e^{i(\varphi + \psi)} \quad \text{and (if } w \neq 0) \quad \frac{z}{w} = \frac{r}{s} e^{i(\varphi - \psi)}.
\]
Theorem

Let z and w be two complex numbers written in polar coordinates:

$$z = r e^{i\varphi} \quad \text{and} \quad w = s e^{i\psi},$$

then

$$z \, w = r s e^{i(\varphi+\psi)} \quad \text{and (if } w \neq 0) \quad \frac{z}{w} = \frac{r}{s} e^{i(\varphi-\psi)}.$$

In other words:

- the absolute value of $z \, w$ is the **product** of $|z|$ and $|w|$,
- the argument of $z \, w$ is the **sum** of $\arg z$ and $\arg w$,
- the absolute value of z/w is the **quotient** of $|z|$ and $|w|$,
- the argument of z/w is the **difference** of $\arg z$ and $\arg w$.
Corollary

Let \(w = r e^{i\varphi} \). Then multiplication of an arbitrary complex number \(z \) with \(w \) can be constructed geometrically by scaling \(z \) with scale factor \(r \), and by rotating \(z \) over an angle \(\varphi \) about 0.
Corollary

Let \(w = r e^{i\varphi} \). Then multiplication of an arbitrary complex number \(z \) with \(w \) can be constructed geometrically by scaling \(z \) with scale factor \(r \), and by rotating \(z \) over an angle \(\varphi \) about 0.

- **Example:** let \(w = \sqrt{3} + i = 2 e^{i\pi/6} \), then \(zw \) is obtained by scaling \(z \) with factor 2, and by rotating \(z \) over an angle of 30°.
Corollary

Let \(w = r e^{i\varphi} \). Then multiplication of an arbitrary complex number \(z \) with \(w \) can be constructed geometrically by scaling \(z \) with scale factor \(r \), and by rotating \(z \) over an angle \(\varphi \) about 0.

- **Example:** let \(w = \sqrt{3} + i = 2 e^{i\pi/6} \), then \(zw \) is obtained by scaling \(z \) with factor 2, and by rotating \(z \) over an angle of 30°.
Exercise

Let S be the square with vertices 0, 1, i and $1 + i$. Draw the figure T obtained by multiplying all points of S with $w = 1 + i$.

Example: let $w = \sqrt{3} + i = 2e^{i\pi/6}$, then zw is obtained by scaling z with factor 2, and by rotating z over an angle of 30°.
Corollary

Let $w = re^{i\phi}$. Then multiplication of an arbitrary complex number z with w can be constructed geometrically by scaling z with scale factor r, and by rotating z over an angle ϕ about 0.

Example: let $w = \sqrt{3} + i = 2e^{i\pi/6}$, then zw is obtained by scaling z with factor 2, and by rotating z over an angle of 30°.

Exercise

Let S be the square with vertices 0, 1, i and $1 + i$. Draw the figure T obtained by multiplying all points of S with $w = 1 + i$.

Answer

$$w \cdot 0 = 0$$
$$w \cdot 1 = 1 + i$$
$$w(1 + i) = (1 + i)^2 = 2i$$
$$w \cdot i = i - 1$$

T is obtained by scaling S with a factor $\sqrt{2}$ and by rotating S counter-clockwise over an angle of 45° about 0.
■ **Rectangular form** is the same as canonical form.

■ **Trigonometric form** is like polar form but with sine and cosine, and with a non-negative angle smaller than 360°, for example:

$$z = 7\left(\cos(225^\circ) + i \sin(225^\circ) \right).$$

■ MyLabsPlus uses cis (“cosine plus i sine”) to indicate Eulers function:

$$\text{cis}(\varphi) = e^{i\varphi}.$$
In this part of the lecture we write j in stead of i.
<table>
<thead>
<tr>
<th>Component</th>
<th>Relation (v(t)) vs. (i(t))</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>(v(t) = Ri(t))</td>
<td>Dissipates energy</td>
</tr>
<tr>
<td>Capacitor</td>
<td>(v(t) = \frac{1}{C} \int_{0}^{t} i(\tau) , d\tau)</td>
<td>Stores energy in an electric field</td>
</tr>
<tr>
<td>Inductor</td>
<td>(v(t) = Li'(t))</td>
<td>Stores energy in a magnetic field</td>
</tr>
</tbody>
</table>
Passive components

- If you know $i(t)$, then $v(t)$ can be uniquely determined.
Passive components

If you know $i(t)$, then $v(t)$ can be uniquely determined.

The component can therefore be regarded to be a system:

\[i(t) \rightarrow S \rightarrow v(t) \]

or abbreviated: $i(t) \mapsto v(t)$.
If you know $i(t)$, then $v(t)$ can be uniquely determined.

The component can therefore be regarded to be a system:

$$i(t) \rightarrow S \rightarrow v(t)$$

or abbreviated: $i(t) \mapsto v(t)$.

Example: for an inductor with inductance L we have

$$i(t) \mapsto Li'(t).$$
Definition

Let S be a system. Let $x(t)$ and $y(t)$ be signals for which S has the following responses:

$$x(t) \mapsto u(t) \quad \text{and} \quad y(t) \mapsto v(t).$$

Then the response of S to the input $x(t) + j y(t)$ is defined as

$$u(t) + j v(t).$$

Example: for an inductor with inductance L we have

$$\cos(\omega t) \mapsto -\omega L \sin(\omega t) \quad \text{and} \quad \sin(\omega t) \mapsto \omega L \cos(\omega t),$$

hence

$$e^{j \omega t} = \cos(\omega t) + j \sin(\omega t) \mapsto -\omega L \sin(\omega t) + j \omega L \cos(\omega t) = j \omega L (\cos(\omega t) + j \sin(\omega t)) = j \omega L e^{j \omega t}.$$
Definition

Let S be a system. Let $x(t)$ and $y(t)$ be signals for which S has the following responses:

\[x(t) \mapsto u(t) \quad \text{and} \quad y(t) \mapsto v(t). \]

Then the response of S to the input $x(t) + jy(t)$ is defined as

\[u(t) + jv(t). \]

Example: for an inductor with inductance L we have

\[\cos(\omega t) \mapsto -\omega L \sin(\omega t) \quad \text{and} \quad \sin(\omega t) \mapsto \omega L \cos(\omega t), \]

hence

\[e^{j\omega t} = \cos(\omega t) + j\sin(\omega t) \mapsto -\omega L \sin(\omega t) + j\omega L \cos(\omega t) \]

\[= j\omega L \left(\cos(\omega t) + j\sin(\omega t) \right) \]

\[= j\omega L e^{j\omega t}. \]
Passive components are linear and time invariant.

- **Linearity** means that if $x_1(t) \rightarrow y_1(t)$ and $x_2(t) \rightarrow y_2(t)$, then
 \[
 \alpha x_1(t) + \beta x_2(t) \rightarrow \alpha y_1(t) + \beta y_2(t).
 \]
 for all α and β.

- **Time invariance** means that if $x(t) \rightarrow y(t)$, then
 \[
 x(t - t_0) \rightarrow y(t - t_0) \quad \text{for all } t_0.
 \]
Theorem

Passive components are **linear** and **time invariant**.

- **Linearity** means that if \(x_1(t) \mapsto y_1(t) \) and \(x_2(t) \mapsto y_2(t) \), then
 \[\alpha x_1(t) + \beta x_2(t) \mapsto \alpha y_1(t) + \beta y_2(t). \]
 for all \(\alpha \) and \(\beta \).

- **Time invariance** means that if \(x(t) \mapsto y(t) \), then
 \[x(t - t_0) \mapsto y(t - t_0) \quad \text{for all} \quad t_0. \]

Linear and time invariant systems are called LTI systems.
Theorem

Passive components are **linear and time invariant**.

- **Linearity** means that if $x_1(t) \mapsto y_1(t)$ and $x_2(t) \mapsto y_2(t)$, then
 $$\alpha x_1(t) + \beta x_2(t) \mapsto \alpha y_1(t) + \beta y_2(t).$$
 for all α and β.

- **Time invariance** means that if $x(t) \mapsto y(t)$, then
 $$x(t - t_0) \mapsto y(t - t_0) \text{ for all } t_0.$$

Linear and time invariant systems are called LTI systems.

Passive components can be regarded as systems: the input is the current $i(t)$ through the component, and the response is the voltage $v(t)$ over the component.
Theorem

Passive components are linear and time invariant.

- Linearity means that if $x_1(t) \mapsto y_1(t)$ and $x_2(t) \mapsto y_2(t)$, then

 $$\alpha x_1(t) + \beta x_2(t) \mapsto \alpha y_1(t) + \beta y_2(t).$$

 for all α and β.

- Time invariance means that if $x(t) \mapsto y(t)$, then

 $$x(t - t_0) \mapsto y(t - t_0) \quad \text{for all } t_0.$$

Linear and time invariant systems are called LTI systems.

Passive components can be regarded as systems: the input is the current $i(t)$ through the component, and the response is the voltage $v(t)$ over the component.

Passive components are LTI systems.
Theorem

For all LTI systems there exists a function $Z(\omega)$ such that

\[e^{j\omega t} \mapsto Z(\omega) e^{j\omega t} \]
Theorem

For all LTI systems there exists a function \(Z(\omega) \) such that

\[
e^{j\omega t} \mapsto Z(\omega) e^{j\omega t}
\]

- The function \(Z(\omega) \) is called the **transfer function**.
Theorem

For all LTI systems there exists a function $Z(\omega)$ such that

\[
e^{j\omega t} \mapsto Z(\omega)e^{j\omega t}
\]

- The function $Z(\omega)$ is called the **transfer function**.
- The transfer function does not depend on time, but can depend on the frequency ω.
Theorem

For all LTI systems there exists a function $Z(\omega)$ such that

$$e^{j\omega t} \mapsto Z(\omega)e^{j\omega t}$$

- The function $Z(\omega)$ is called the **transfer function**.
- The transfer function does not depend on time, but can depend on the frequency ω.
- For passive components, where the input is the current $i(t)$ through the component, and the response is the voltage $v(t)$ over the component, the function $Z(\omega)$ is called the **impedance** of the component, usually denoted as Z.
The transfer function

Theorem

For all LTI systems there exists a function $Z(\omega)$ such that

\[e^{j\omega t} \mapsto Z(\omega) e^{j\omega t} \]

- The function $Z(\omega)$ is called the **transfer function**.
- The transfer function does not depend on time, but can depend on the frequency ω.
- For passive components, where the input is the current $i(t)$ through the component, and the response is the voltage $v(t)$ over the component, the function $Z(\omega)$ is called the **impedance** of the component, usually denoted as Z.
- **Example**: for an inductor with inductance L we have

 \[e^{j\omega t} \mapsto j\omega L e^{j\omega t}, \]

 so the impedance is $Z = j\omega L$.
<table>
<thead>
<tr>
<th>Component</th>
<th>Impedance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>$Z = R$</td>
<td>Dissipates energy</td>
</tr>
<tr>
<td>Capacitor</td>
<td>$Z = \frac{1}{j\omega C}$</td>
<td>Stores energy in an electric field</td>
</tr>
<tr>
<td>Inductor</td>
<td>$Z = j\omega L$</td>
<td>Stores energy in a magnetic field</td>
</tr>
</tbody>
</table>
Example

Let \(v(t) = 5 \cos(2\pi f t) \), where the frequency is equal to \(f = 10 \text{ kHz} \). The inductance \(L \) is 50 mH. Describe the current \(i(t) \) through the inductor as a function of \(t \). What is the amplitude of \(i(t) \)?
Example

Let $v(t) = 5 \cos(2\pi f t)$, where the frequency is equal to $f = 10 \text{ kHz}$. The inductance L is 50 mH. Describe the current $i(t)$ through the inductor as a function of t. What is the amplitude of $i(t)$?

- The impedance of L is $Z = j\omega L$, where $\omega = 2\pi f$.

\[L \quad \text{\(i(t)\)} \]
\[v(t) \]
\[L = 10 \text{ mH} \]
Example

Let \(v(t) = 5 \cos(2\pi f t) \), where the frequency is equal to \(f = 10 \text{ kHz} \). The inductance \(L \) is \(50 \text{ mH} \). Describe the current \(i(t) \) through the inductor as a function of \(t \). What is the amplitude of \(i(t) \)?

- The impedance of \(L \) is \(Z = j\omega L \), where \(\omega = 2\pi f \).
- Define \(\hat{v}(t) = 5e^{j\omega t} \), then

\[
\hat{i}(t) = \frac{\hat{v}(t)}{Z} = \frac{\hat{v}(t)}{j\omega L} = -\frac{5j e^{j\omega t}}{\omega L} = -\frac{5j}{2\pi f L} \left(\cos(\omega t) + j \sin(\omega t) \right)
\]

\[
= \frac{5}{2\pi f L} \left(\sin(\omega t) - j \cos(\omega t) \right).
\]
Example

Let \(v(t) = 5 \cos(2\pi f t) \), where the frequency is equal to \(f = 10 \text{ kHz} \). The inductance \(L \) is 50 mH. Describe the current \(i(t) \) through the inductor as a function of \(t \). What is the amplitude of \(i(t) \)?

- The impedance of \(L \) is \(Z = j\omega L \), where \(\omega = 2\pi f \).
- Define \(\hat{v}(t) = 5 e^{j\omega t} \), then
 \[
 \hat{i}(t) = \frac{\hat{v}(t)}{Z} = \frac{\hat{v}(t)}{j\omega L} = -\frac{5j e^{j\omega t}}{\omega L} = -\frac{5j}{2\pi f L} \left(\cos(\omega t) + j \sin(\omega t) \right)
 \]
 \[
 = \frac{5}{2\pi f L} \left(\sin(\omega t) - j \cos(\omega t) \right).
 \]
- Hence \(i(t) = \text{Re} \left(\hat{i}(t) \right) = \frac{5}{2\pi f L} \sin(2\pi f t) \approx 0.001591 \sin(2\pi f t) \).
Impedance of an inductor

Example

Let \(v(t) = 5 \cos(2\pi f t) \), where the frequency is equal to \(f = 10 \text{ kHz} \). The inductance \(L \) is 50 mH. Describe the current \(i(t) \) through the inductor as a function of \(t \). What is the amplitude of \(i(t) \)?

\[L = 10 \text{ mH} \]

- The impedance of \(L \) is \(Z = j\omega L \), where \(\omega = 2\pi f \).
- Define \(\hat{v}(t) = 5e^{j\omega t} \), then
 \[
 \hat{i}(t) = \frac{\hat{v}(t)}{Z} = \frac{\hat{v}(t)}{j\omega L} = -\frac{5j}{\omega L} e^{j\omega t} = -\frac{5j}{2\pi f L} \left(\cos(\omega t) + j\sin(\omega t) \right)
 \]
 \[
 = \frac{5}{2\pi f L} \left(\sin(\omega t) - j\cos(\omega t) \right).
 \]
- Hence \(i(t) = \text{Re} \left(\hat{i}(t) \right) = \frac{5}{2\pi f L} \sin(2\pi f t) \approx 0.001591 \sin(2\pi f t) \).
- The amplitude of \(i(t) \) is 1.591 mA.
Composition in series

The following relations hold:

\[v_1(t) = Z_1 i(t) \quad \text{and} \quad v_2(t) = Z_2 i(t). \]
The following relations hold:
\[v_1(t) = Z_1 i(t) \quad \text{and} \quad v_2(t) = Z_2 i(t). \]

The voltage over clamps \(AB \) is
\[v(t) = v_1(t) + v_2(t) = Z_1 i(t) + Z_2 i(t) = (Z_1 + Z_2)i(t). \]
The following relations hold:

\[v_1(t) = Z_1 i(t) \quad \text{and} \quad v_2(t) = Z_2 i(t). \]

The voltage over clamps \(AB \) is

\[v(t) = v_1(t) + v_2(t) = Z_1 i(t) + Z_2 i(t) = (Z_1 + Z_2) i(t). \]

The replacement impedance for the series composition is \(\frac{v(t)}{i(t)} \), hence

\[Z_{\text{ser}} = Z_1 + Z_2 \]
Exercise

What is the replacement capacitance C' of two capacitors in series?

The voltage over clamps AB is

$$v(t) = v_1(t) + v_2(t) = Z_1 i(t) + Z_2 i(t) = (Z_1 + Z_2) i(t).$$

The replacement impedance for the series composition is $\frac{v(t)}{i(t)}$, hence

$$Z_{\text{ser}} = Z_1 + Z_2.$$
Exercise

What is the replacement capacitance C' of two capacitors

Answer

$$\frac{1}{j\omega C} = Z_1 + Z_2 = \frac{1}{j\omega C_1} + \frac{1}{j\omega C_2} = \frac{1}{j\omega (C_1 + C_2)}.$$

Hence

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \implies C = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}.$$
The total current through the circuit is

\[i(t) = i_1(t) + i_2(t) = \frac{v(t)}{Z_1} + \frac{v(t)}{Z_2} = \left(\frac{1}{Z_1} + \frac{1}{Z_2} \right) v(t). \]
The total current through the circuit is

\[i(t) = i_1(t) + i_2(t) = \frac{v(t)}{Z_1} + \frac{v(t)}{Z_2} = \left(\frac{1}{Z_1} + \frac{1}{Z_2} \right) v(t). \]

The reciprocal of the replacement impedance is \(\frac{i(t)}{v(t)} \), hence

\[\frac{1}{Z_{\text{par}}} = \frac{1}{Z_1} + \frac{1}{Z_2} \]
Composition in parallel

Exercise

What is the replacement capacitance C' of two parallel capacitors?

The reciprocal of the replacement impedance is $\frac{i(t)}{v(t)}$, hence

$$\frac{1}{Z_{\text{par}}} = \frac{1}{Z_1} + \frac{1}{Z_2}$$
Composition in parallel

\[i(t) = i_1(t) + i_2(t) = Z_1 v(t) + Z_2 v(t) = (1/Z_1 + 1/Z_2) v(t) \]

Exercise
What is the replacement capacitance \(C \) of two parallel capacitors?

Answer

\[j\omega C = \frac{1}{1/j\omega C} = \frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} \]

\[= \frac{1}{1/j\omega C_1} + \frac{1}{1/j\omega C_2} = j\omega C_1 + j\omega C_2 \]

\[= j\omega (C_1 + C_2), \]

hence \(C = C_1 + C_2 \).
The for the impedance of an inductor L parallel to a capacitor C we have

\[\frac{1}{Z} = \frac{1}{j\omega L} + \frac{1}{1/j\omega C} \]
The for the impedance of an inductor L parallel to a capacitor C we have

$$\frac{1}{Z} = \frac{1}{j\omega L} + \frac{1}{1/j\omega C} = \frac{1}{j\omega L} + j\omega C$$
The for the impedance of an inductor L parallel to a capacitor C we have

$$\frac{1}{Z} = \frac{1}{j\omega L} + \frac{1}{1/j\omega C} = \frac{1}{j\omega L} + j\omega C = \frac{1 - \omega^2 LC}{j\omega L}.$$
The for the impedance of an inductor L parallel to a capacitor C we have

$$\frac{1}{Z} = \frac{1}{j\omega L} + \frac{1}{1/j\omega C} = \frac{1}{j\omega L} + j\omega C = \frac{1 - \omega^2 LC}{j\omega L}.$$

The impedance of the circuit is

$$Z = \frac{j\omega L}{1 - \omega^2 LC}.$$
The resonance frequency

\[L \rightarrow C \quad \rightarrow \quad \text{Impedance:} \quad Z = \frac{j\omega L}{1 - \omega^2 LC} \]
The resonance frequency

\[Z = \frac{j\omega L}{1 - \omega^2 LC} \]

The impedance becomes very large if \(\omega^2 \approx \frac{1}{LC} \).
The impedance becomes very large if $\omega^2 \approx \frac{1}{LC}$.

The frequency $\omega_{\text{res}} = \frac{1}{\sqrt{LC}}$ is called the **resonance frequency**.

$$Z = \frac{j\omega L}{1 - \omega^2 LC}$$
Answer the following questions for the circuits (1), (2) and (3).

(a) What is the replacement impedance Z? Write Z in canonical form.

(b) What happens with $|Z|$ for high frequencies ($\omega \to \infty$)?

(c) What happens with $|Z|$ for low frequencies ($\omega \to 0$)?